Dopamine release from transplanted neural stem cells in Parkinsonian rat striatum in vivo.

نویسندگان

  • Xinjiang Kang
  • Huadong Xu
  • Sasa Teng
  • Xiaoyu Zhang
  • Zijun Deng
  • Li Zhou
  • Panli Zuo
  • Bing Liu
  • Bin Liu
  • Qihui Wu
  • Li Wang
  • Meiqin Hu
  • Haiqiang Dou
  • Wei Liu
  • Feipeng Zhu
  • Qing Li
  • Shu Guo
  • Jingli Gu
  • Qian Lei
  • Jing Lü
  • Yu Mu
  • Mu Jin
  • Shirong Wang
  • Wei Jiang
  • Kun Liu
  • Changhe Wang
  • Wenlin Li
  • Kang Zhang
  • Zhuan Zhou
چکیده

Embryonic stem cell-based therapies exhibit great potential for the treatment of Parkinson's disease (PD) because they can significantly rescue PD-like behaviors. However, whether the transplanted cells themselves release dopamine in vivo remains elusive. We and others have recently induced human embryonic stem cells into primitive neural stem cells (pNSCs) that are self-renewable for massive/transplantable production and can efficiently differentiate into dopamine-like neurons (pNSC-DAn) in culture. Here, we showed that after the striatal transplantation of pNSC-DAn, (i) pNSC-DAn retained tyrosine hydroxylase expression and reduced PD-like asymmetric rotation; (ii) depolarization-evoked dopamine release and reuptake were significantly rescued in the striatum both in vitro (brain slices) and in vivo, as determined jointly by microdialysis-based HPLC and electrochemical carbon fiber electrodes; and (iii) the rescued dopamine was released directly from the grafted pNSC-DAn (and not from injured original cells). Thus, pNSC-DAn grafts release and reuptake dopamine in the striatum in vivo and alleviate PD symptoms in rats, providing proof-of-concept for human clinical translation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression of Neurotrophins in Adipose-derived Stem Cells during in vitro Culture and Posttransplantation in Parkinsonian Rat Model

Background: Adipose tissue stem cells (ASCs) cause faster repair of damaged tissue posttransplantation by releasing growth factors in neurodegenerative diseases. ASCs secrete factors in the culture medium called conditioned medium (CM) in vitro. This study investigated the expression of neurotrophin genes in vitro culture and transplant of ASCs in Parkinsonian rats. Materials and Methods: In th...

متن کامل

Dopaminergic-Like Neurons Derived from Oral Mucosa Stem Cells by Developmental Cues Improve Symptoms in the Hemi-Parkinsonian Rat Model

Achieving safe and readily accessible sources for cell replacement therapy in Parkinson's disease (PD) is still a challenging unresolved issue. Recently, a primitive neural crest stem cell population (hOMSC) was isolated from the adult human oral mucosa and characterized in vitro and in vivo. In this study we assessed hOMSC ability to differentiate into dopamine-secreting cells with a neuronal-...

متن کامل

Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions.

To model human neural-cell-fate specification and to provide cells for regenerative therapies, we have developed a method to generate human neural progenitors and neurons from human embryonic stem cells, which recapitulates human fetal brain development. Through the addition of a small molecule that activates canonical WNT signaling, we induced rapid and efficient dose-dependent specification o...

متن کامل

Survival and differentiation of transplanted neural stem cells in mice brain with MPTP-induced Parkinson disease.

AIM To determine survival and differentiation of cultured neural stem cells (NSCs) into viable and functional neurons upon transplantation into mice brain of MPTP-induced Parkinson disease (PD). METHODS Mouse model of PD was established with two subcutaneous (sc) injections of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP, 40 mg/kg) twice, 16 h apart. NSCs isolated from rat embryo midbra...

متن کامل

Delivery of Epidermal Neural Crest Stem Cells (EPI-NCSC) to hippocamp in Alzheimer\'s Disease Rat Model

Background: Alzheimer’s disease (AD) is characterized by progressive neuronal loss in hippocamp. Epidermal neural crest stem cells (EPI-NCSC) can differentiate into neurons, astrocytes and oligodendrocytes. The purpose of this study was to evaluate the effects of transplanting EPI-NCSC into AD rat model. Methods: Two weeks after induction of AD by injection of Amyloid-β 1-40 into CA1 area of ra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 111 44  شماره 

صفحات  -

تاریخ انتشار 2014